RETA NUMÉRICA
A reta numérica é uma reta numerada
usada geralmente para medir distâncias.
Todos os números reais podem
ser localizados nessa reta, embora quase nunca haja necessidade de fazer isso.
Um exemplo de reta numérica no
nosso dia a dia é a régua.
Ela é um objeto usado para desenhar linhas retas ou para medir comprimentos.
Repare que as réguas são partes de uma reta que recebeu alguns números
positivos, geralmente os números que vão de 0 a 20 ou 0 a 30.
Exemplo de reta numérica em uma régua comum
Construção da reta numérica
A reta
numérica deve seguir alguns passos e critérios para que
seja construída corretamente. Esses passos determinam também se uma reta que
possui números pode ser chamada de reta numérica ou não. São eles:
1 – Escolha uma reta e nela escolha
um ponto que será chamado de origem.
A esse ponto atribua o número 0 (zero).
2 – Escolha um “sentido positivo” para
essa reta.
Por exemplo: em uma reta horizontal, poderemos escolher o sentido “da esquerda
para a direita” como sentido positivo. Isso significará que um número maior
sempre deverá ser colocado mais à direita. O resultado dessa ordenação é que os
números positivos ficarão à direita da origem e os negativos à esquerda.
3 – Escolha uma unidade de medida e
comece a colocar os números nela. Por exemplo, se a unidade de medida for 1 cm,
o ponto dessa reta, cuja distância até o centro é 1 cm, deverá ser marcado com
o número + 1 no sentido positivo e com o número – 1 no sentido negativo. O
ponto cuja distância é 2 cm deverá ser marcado como + 2 e – 2 nos respectivos
sentidos e assim por diante. Ao final, teremos uma reta com todos os números inteiros marcados
(todos os que forem possíveis, pois as retas são infinitas).
Fazendo isso, sua reta numérica estará
pronta e ficará como no exemplo abaixo.
Propriedades da reta numérica
As propriedades das retas numéricas dizem
respeito à ordenação dos
números e do modo como eles são dispostos nela. Observe:
1 – Um número mais à direita é maior que
um número mais à esquerda.
Essa propriedade já havia sido mencionada
e foi colocada como método de construção da reta numérica.
2 – Um número negativo sempre é menor
que um número positivo.
Também já discutida, vale a pena
mencionar alguns exemplos dessa propriedade, observe.
Qual número é maior + 1 ou – 1? O número
1 é maior porque é positivo. Pense em quem tem mais dinheiro, aquele que possui
1 real (+ 1) ou aquele que deve 1 real (– 1)?
Qual número é maior 0 ou – 13? Embora –
13 pareça ser maior que 0, na verdade não é. Pense novamente: Quem tem mais
dinheiro? Aquele que não tem nada (0) ou aquele que deve 13 reais (– 13)?
Enfim, um número negativo é sempre menor
que um número positivo. Agora, qual dos dois números é menor – 13 ou – 20.
Para resolver esse problema, pense
na reta numérica.
Observe a figura abaixo.
Reta numérica contendo os números – 13 e – 20
3 – Cada número real representa um único
ponto na reta
numérica e cada ponto da reta representa apenas um único
número real.
Essa propriedade diz respeito à
formalização do conceito de reta
numérica, feito em uma matemática mais avançada. Ele quer dizer
que, qualquer que seja o número real, apenas um ponto na reta numérica o
representa, pois ela é construída desse modo.
Por
Luiz Paulo Moreira
Graduado em Matemática
Graduado em Matemática
Nenhum comentário:
Postar um comentário